Semismoothness of the Maximum Eigenvalue Function of a Symmetric Tensor and its Application
نویسندگان
چکیده
In this paper, we examine the maximum eigenvalue function of an even order real symmetric tensor. By using the variational analysis techniques, we first show that the maximum eigenvalue function is a continuous and convex function on the symmetric tensor space. In particular, we obtain the convex subdifferential formula for the maximum eigenvalue function. Next, for an mth-order n-dimensional symmetric tensor A, we show that the maximum eigenvalue function is always ρth-order semismooth at A for some rational number ρ > 0. In the special case when the geometric multiplicity is one, we show that ρ can be set as 1 (2m−1)n . Sufficient condition ensuring the strong semismoothness of the maximum eigenvalue function is also provided. As an application, we propose a generalized Newton method to solve the space tensor conic linear programming problem which arises in medical imaging area. Local convergence rate of this method is established by using the semismooth property of the maximum eigenvalue function.
منابع مشابه
The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory
In this paper, using variational analysis and optimization techniques, we examine some fundamental analytic properties of Z-eigenvalues of a real symmetric tensor with even order. We first establish that the maximum Z-eigenvalue function is a continuous and convex function on the symmetric tensor space, and so, provide formulas of the convex conjugate function and ε-subdifferential of the maxim...
متن کاملStrong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems
It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions, which implies that the eigenvalues are semismooth functions. Based on a recent result of the authors, it is further proved in this paper that the eigenvalues of a symmetric ma...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملProperties of eigenvalue function
For the eigenvalue function on symmetric matrices, we have gathered a number of it’s properties.We show that this map has the properties of continuity, strict continuity, directional differentiability, Frechet differentiability, continuous differentiability. Eigenvalue function will be extended to a larger set of matrices and then the listed properties will prove again.
متن کاملFinding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentiall...
متن کامل